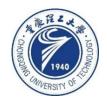


Improving Information Cascade Modeling by Social Topology and Dual Role User Dependency

Baichuan Liu[0000-0002-6216-3011], Deqing Yang[10000-0002-1390-3861], Yuchen Shi[‡], and Yueyi Wang[‡]

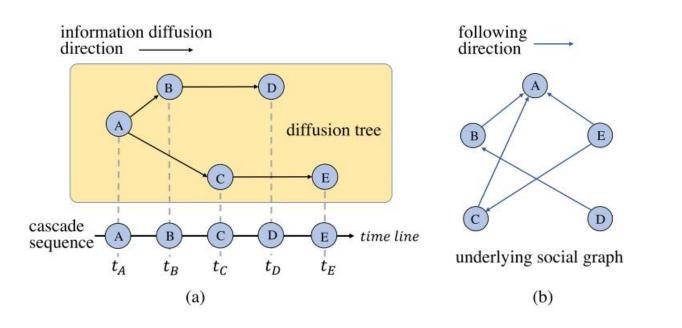
School of Data Science, Fudan University, Shanghai 200433, China. [§]{bcliu20,yangdeqing}@fudan.edu.cn, [‡]{ycshi21,yueyiwang21}@m.fudan.edu.cn

Github:https://github.com/JUNJINO126/TAN-DRUD DASFAA 2022



Reported by Nengqiang Xiang

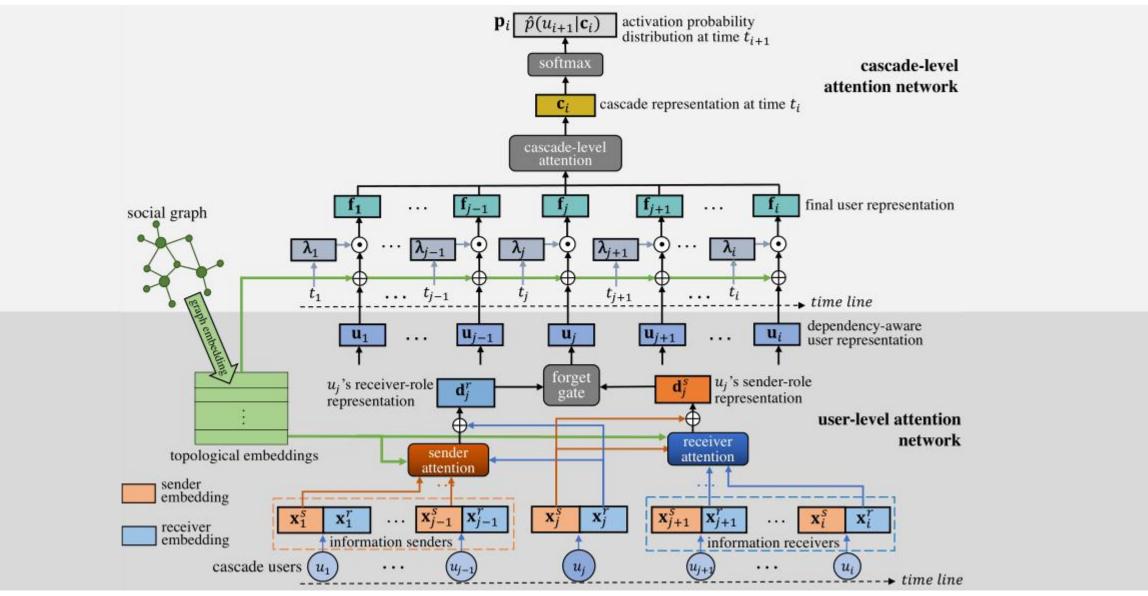
Introduction



The user dependencies captured by most of previous diffusion models are only unidirectional. They suppose a successor is only influenced by a predecessor during information diffusion, whereas the opposite dependency is rarely considered

Fig. 1. An example of an information cascade sequence, diffusion tree and social graph.

Method

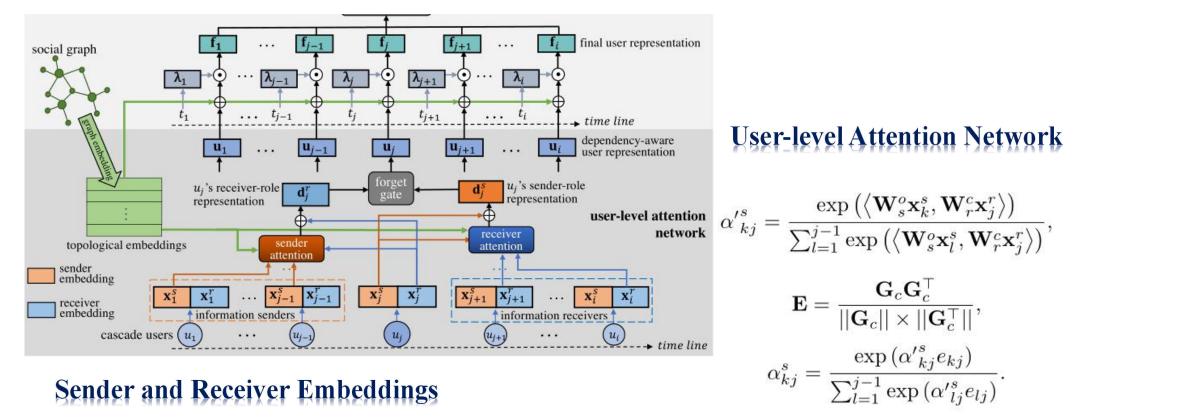


(1)

(2)

(3)

Method



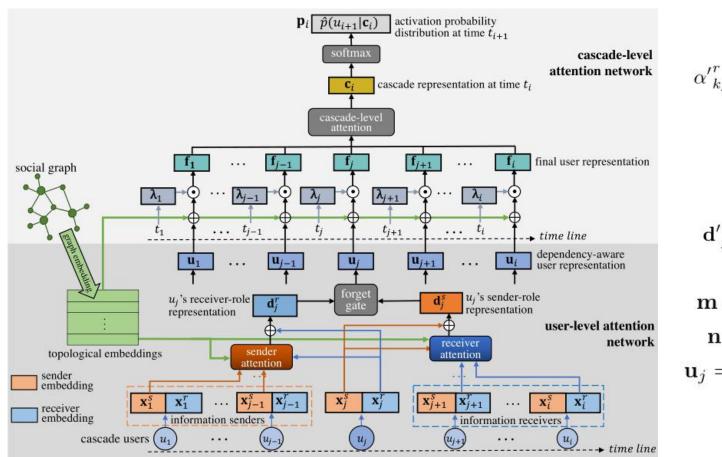
$$\mathbf{X}^{s}, \mathbf{X}^{r} \in \mathbf{R}^{N imes d}$$

Social Topological Embeddings

 $\mathbf{G}_{c} \in \mathbf{R}^{i imes d_{g}}$

$$\mathbf{d'}_{j}^{r} = \sum_{k=1}^{j-1} \alpha_{kj}^{s} \mathbf{x}_{k}^{s}, \quad \mathbf{d}_{j}^{r} = \mathbf{d'}_{j}^{r} + \mathbf{x}_{j}^{r}.$$
(4)

Method



$$\alpha'_{kj}^{r} = \frac{\exp\left(\left\langle \mathbf{W}_{r}^{o}\mathbf{x}_{k}^{r}, \mathbf{W}_{s}^{c}\mathbf{x}_{j}^{s}\right\rangle\right)}{\sum_{l=j+1}^{i}\exp\left(\left\langle \mathbf{W}_{r}^{o}\mathbf{x}_{l}^{r}, \mathbf{W}_{s}^{c}\mathbf{x}_{j}^{s}\right\rangle\right)},\tag{5}$$

$$\alpha_{kj}^{r} = \frac{\exp\left(\alpha_{kj}^{r}e_{kj}\right)}{\sum_{l=j+1}^{i}\exp\left(\alpha_{lj}^{r}e_{lj}\right)},\tag{6}$$

$$\mathbf{d'}_{j}^{s} = \sum_{k=j+1}^{i} \alpha_{kj}^{r} \mathbf{x}_{k}^{r}, \quad \mathbf{d}_{j}^{s} = \mathbf{d'}_{j}^{s} + \mathbf{x}_{j}^{s}.$$
(7)

$$\mathbf{m} = \sigma (\mathbf{W}_m^s \mathbf{d}_j^s + \mathbf{W}_m^r \mathbf{d}_j^r + \mathbf{b}_m), \tag{8}$$
$$\mathbf{m} = \sigma (\mathbf{W}_m^s \mathbf{d}_j^s + \mathbf{W}_m^r \mathbf{d}_j^r + \mathbf{b}_m), \tag{9}$$

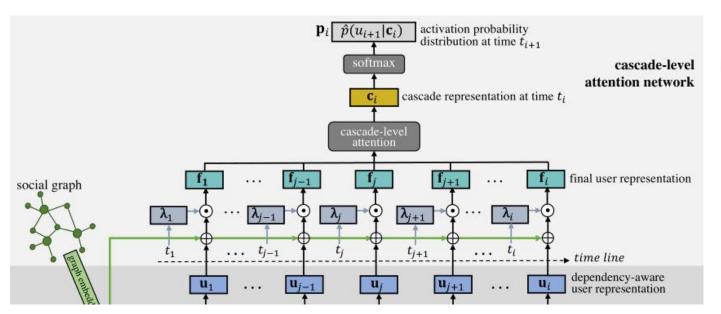
$$\mathbf{n} = \sigma(\mathbf{W}_n^s \mathbf{d}_j^s + \mathbf{W}_n^r \mathbf{d}_j^r + \mathbf{b}_n),$$

$$\mathbf{u}_j = (\mathbf{1} - \mathbf{m}) \odot \mathbf{d}_j^s + (\mathbf{1} - \mathbf{n}) \odot \mathbf{d}_j^r$$

(9)

(10)

Method



Prediction and Optimization

$$\mathbf{p}_i = \operatorname{softmax}(\mathbf{W}_c \mathbf{c}_i + \mathbf{b}_c) \tag{16}$$

$$\mathcal{L} = -\frac{1}{M} \sum_{m=1}^{M} \sum_{i=1}^{n_m - 1} \log \hat{p}(u_{i+1} \mid \mathbf{c}_i^m) + \lambda L_2$$
(17)

Cascade-level Attention Network

$$\mathbf{G}_{new} = \tanh\left(\mathbf{W}_{g}\mathbf{G}_{c} + \mathbf{b}_{g}\right)$$
(11)

$$\Delta^{t} = T_{\max}/T \quad \Delta t_{j} = t_{i} - t_{j}$$
if $n = int(\Delta t_{j}/\Delta^{t}) \quad \mathbf{t}_{j}^{i} = 1 \quad \mathbf{n} \in [0, T)$

$$\boldsymbol{\lambda}_{j} = \sigma(\mathbf{W}_{t}\mathbf{t}_{j} + \mathbf{b}_{t}) \quad \mathbf{t}_{j} \in \mathbb{R}^{T}$$
(12)

$$\mathbf{f}_j = \boldsymbol{\lambda}_j \odot (\mathbf{g}_j + \mathbf{u}_j) \tag{13}$$

$$\beta_j = \frac{\exp\left(\langle \mathbf{w}, \mathbf{f}_j \rangle\right)}{\sum_{k=1}^{i} \exp\left(\langle \mathbf{w}, \mathbf{f}_k \rangle\right)}$$
(14)

$$\mathbf{c}_i = \sum_{j=1}^i \beta_j \mathbf{f}_j. \tag{15}$$

Table 1. Statistics of the three used datasets.

Dataset	Twitter	Douban	Meme
User number	12,627	23,123	4,709
Cascade number	3,442	$10,\!602$	12,661
Average cascade length	32.60	27.14	16.24
Social link number	309,631	348,280	_

Table 2. TAN-DRUD's prediction performance (score %) with dual role embedding sizes (d).

d	RR	P@10	P@50	P@100
16	14.31	24.33	43.56	53.50
32	15.53	26.30	45.12	54.58
64	16.62	28.13	45.61	55.43
128	15.82	27.53	45.17	54.62

Table 3. TAN-DRUD's prediction performance (score %) with different time interval numbers (T).

T	RR	P@10	P@50	P@100
1	15.95	27.12	45.53	55.91
10	15.84	27.26	45.06	55.04
50	16.62	28.13	45.61	55.43
100	16.32	27.52	46.04	55.36

Table 4. Prediction performance (score %) of all compared models for the three datasets. The best performance scores among all compared models are indicated in bold. The performance scores of leading baseline are underlined.

Dataset		$\mathbf{T}\mathbf{w}$	itter			Doi	ıban			Me	eme	
Model	RR	P@10	P50	P100	RR	P@10	P@50	P@100	RR	P@10	P@50	P@100
DeepDiffuse	2.21	4.45	14.35	21.61	3.23	9.02	14.93	19.13	6.48	13.45	30.10	41.31
Bi-LSTM	7.12	13.41	26.71	36.06	7.95	15.97	29.89	37.41	12.32	24.73	46.27	56.33
Topo-LSTM	4.56	10.17	21.37	29.29	3.87	8.24	16.61	23.09				_
SNIDSA	_	23.37	35.46	43.39	-	11.81	21.91	28.37	-	-	-	_
FOREST	17.49	24.63	37.73	46.20	8.19	13.58	23.47	29.69	16.76	28.49	45.85	55.19
HiDAN	12.99	22.45	35.51	43.01	8.78	17.40	32.37	40.49	15.31	29.03	<u>50.01</u>	<u>60.07</u>
AN-DRUD	13.54	23.28	36.90	45.28	8.91	17.72	32.73	41.01	16.32	29.48	51.09	61.33
TAN-DRUD	16.62	28.13	45.61	55.43	9.41	18.21	34.26	42.02		-	_	
improv. rate $\%$	-4.97	14.21	20.89	19.98	7.18	4.66	5.84	3.78	-2.63	1.56	2.16	2.10

Table 5. TAN-DRUD's prediction performance (score %) upon Twitter with differentgraph embedding models.

Model	RR	P@10	P@50	P@100		
SDNE	16.27	26.68	41.96	51.58		
LINE	15.50	26.71	43.66	53.12		
DeepWalk	16.55	27.84	46.06	55.25		
Node2Vec	16.62	28.13	45.60	55.43		
SCE	13.59	24.20	40.54	50.75		

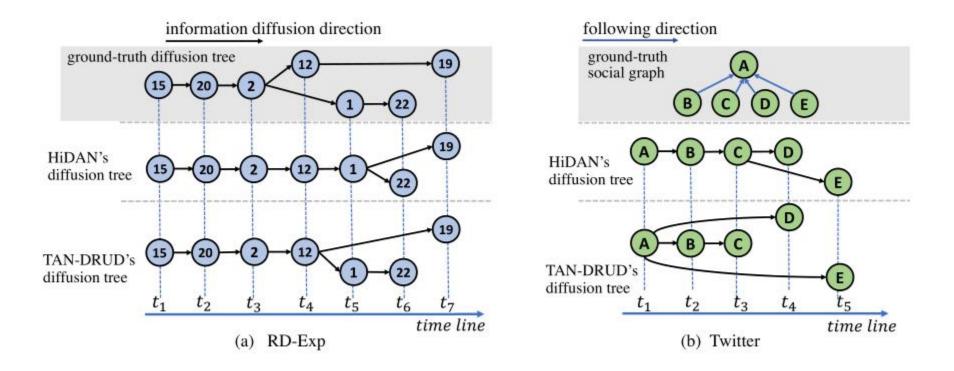


Fig. 3. Case study of diffusion tree inference.

